Translating Answer-Set Programs into Bit-Vector Logic

08/30/2011
by   Mai Nguyen, et al.
0

Answer set programming (ASP) is a paradigm for declarative problem solving where problems are first formalized as rule sets, i.e., answer-set programs, in a uniform way and then solved by computing answer sets for programs. The satisfiability modulo theories (SMT) framework follows a similar modelling philosophy but the syntax is based on extensions of propositional logic rather than rules. Quite recently, a translation from answer-set programs into difference logic was provided---enabling the use of particular SMT solvers for the computation of answer sets. In this paper, the translation is revised for another SMT fragment, namely that based on fixed-width bit-vector theories. Thus, even further SMT solvers can be harnessed for the task of computing answer sets. The results of a preliminary experimental comparison are also reported. They suggest a level of performance which is similar to that achieved via difference logic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro