Transformer Scale Gate for Semantic Segmentation

05/14/2022
by   Hengcan Shi, et al.
0

Effectively encoding multi-scale contextual information is crucial for accurate semantic segmentation. Existing transformer-based segmentation models combine features across scales without any selection, where features on sub-optimal scales may degrade segmentation outcomes. Leveraging from the inherent properties of Vision Transformers, we propose a simple yet effective module, Transformer Scale Gate (TSG), to optimally combine multi-scale features.TSG exploits cues in self and cross attentions in Vision Transformers for the scale selection. TSG is a highly flexible plug-and-play module, and can easily be incorporated with any encoder-decoder-based hierarchical vision Transformer architecture. Extensive experiments on the Pascal Context and ADE20K datasets demonstrate that our feature selection strategy achieves consistent gains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset