Transformer Encoder with Multiscale Deep Learning for Pain Classification Using Physiological Signals

03/13/2023
by   Zhenyuan Lu, et al.
0

Pain is a serious worldwide health problem that affects a vast proportion of the population. For efficient pain management and treatment, accurate classification and evaluation of pain severity are necessary. However, this can be challenging as pain is a subjective sensation-driven experience. Traditional techniques for measuring pain intensity, e.g. self-report scales, are susceptible to bias and unreliable in some instances. Consequently, there is a need for more objective and automatic pain intensity assessment strategies. In this research, we develop PainAttnNet (PAN), a novel transfomer-encoder deep-learning framework for classifying pain intensities with physiological signals as input. The proposed approach is comprised of three feature extraction architectures: multiscale convolutional networks (MSCN), a squeeze-and-excitation residual network (SEResNet), and a transformer encoder block. On the basis of pain stimuli, MSCN extracts short- and long-window information as well as sequential features. SEResNet highlights relevant extracted features by mapping the interdependencies among features. The third architecture employs a transformer encoder consisting of three temporal convolutional networks (TCN) with three multi-head attention (MHA) layers to extract temporal dependencies from the features. Using the publicly available BioVid pain dataset, we test the proposed PainAttnNet model and demonstrate that our outcomes outperform state-of-the-art models. These results confirm that our approach can be utilized for automated classification of pain intensity using physiological signals to improve pain management and treatment.

READ FULL TEXT
research
05/01/2023

Multi-scale Transformer-based Network for Emotion Recognition from Multi Physiological Signals

This paper presents an efficient Multi-scale Transformer-based approach ...
research
05/29/2022

Modeling Beats and Downbeats with a Time-Frequency Transformer

Transformer is a successful deep neural network (DNN) architecture that ...
research
04/12/2023

MED-VT: Multiscale Encoder-Decoder Video Transformer with Application to Object Segmentation

Multiscale video transformers have been explored in a wide variety of vi...
research
10/26/2022

A Stronger Baseline For Automatic Pfirrmann Grading Of Lumbar Spine MRI Using Deep Learning

This paper addresses the challenge of grading visual features in lumbar ...
research
03/01/2022

A multi-task learning for cavitation detection and cavitation intensity recognition of valve acoustic signals

With the rapid development of smart manufacturing, data-driven machinery...
research
02/24/2023

A Convolutional Vision Transformer for Semantic Segmentation of Side-Scan Sonar Data

Distinguishing among different marine benthic habitat characteristics is...
research
05/07/2023

Lightweight Convolution Transformer for Cross-patient Seizure Detection in Multi-channel EEG Signals

Background: Epilepsy is a neurological illness affecting the brain that ...

Please sign up or login with your details

Forgot password? Click here to reset