Transformer Based Deliberation for Two-Pass Speech Recognition

01/27/2021 ∙ by Ke Hu, et al. ∙ 0

Interactive speech recognition systems must generate words quickly while also producing accurate results. Two-pass models excel at these requirements by employing a first-pass decoder that quickly emits words, and a second-pass decoder that requires more context but is more accurate. Previous work has established that a deliberation network can be an effective second-pass model. The model attends to two kinds of inputs at once: encoded audio frames and the hypothesis text from the first-pass model. In this work, we explore using transformer layers instead of long-short term memory (LSTM) layers for deliberation rescoring. In transformer layers, we generalize the "encoder-decoder" attention to attend to both encoded audio and first-pass text hypotheses. The output context vectors are then combined by a merger layer. Compared to LSTM-based deliberation, our best transformer deliberation achieves 7 computation. We also compare against non-deliberation transformer rescoring, and find a 9



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.