TransFiner: A Full-Scale Refinement Approach for Multiple Object Tracking
Multiple object tracking (MOT) is the task containing detection and association. Plenty of trackers have achieved competitive performance. Unfortunately, for the lack of informative exchange on these subtasks, they are often biased toward one of the two and remain underperforming in complex scenarios, such as the expected false negatives and mistaken trajectories of targets when passing each other. In this paper, we propose TransFiner, a transformer-based post-refinement approach for MOT. It is a generic attachment framework that leverages the images and tracking results (locations and class predictions) from the original tracker as inputs, which are then used to launch TransFiner powerfully. Moreover, TransFiner depends on query pairs, which produce pairs of detection and motion through the fusion decoder and achieve comprehensive tracking improvement. We also provide targeted refinement by labeling query pairs according to different refinement levels. Experiments show that our design is effective, on the MOT17 benchmark, we elevate the CenterTrack from 67.8
READ FULL TEXT