Transfer Learning for Electricity Price Forecasting

07/05/2020
by   Salih Gunduz, et al.
0

Electricity price forecasting is an essential task for all the deregulated markets of the world. The accurate prediction of the day-ahead electricity prices is an active research field and available data from various markets can be used as an input for forecasting. A collection of models have been proposed for this task, but the fundamental question on how to use the available big data is often neglected. In this paper, we propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting. We pre-train a bidirectional Gated Recurrent Units (BGRU) network on source markets and finally do a fine-tuning for the target market. Moreover, we test different ways to use the input data from various markets in the models. Our experiments on five different day-ahead markets indicate that transfer learning improves the performance of electricity price forecasting in a statistically significant manner.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset