Transfer learning based multi-fidelity physics informed deep neural network

by   Souvik Chakraborty, et al.

For many systems in science and engineering, the governing differential equation is either not known or known in an approximate sense. Analyses and design of such systems are governed by data collected from the field and/or laboratory experiments. This challenging scenario is further worsened when data-collection is expensive and time-consuming. To address this issue, this paper presents a novel multi-fidelity physics informed deep neural network (MF-PIDNN). The framework proposed is particularly suitable when the physics of the problem is known in an approximate sense (low-fidelity physics) and only a few high-fidelity data are available. MF-PIDNN blends physics informed and data-driven deep learning techniques by using the concept of transfer learning. The approximate governing equation is first used to train a low-fidelity physics informed deep neural network. This is followed by transfer learning where the low-fidelity model is updated by using the available high-fidelity data. MF-PIDNN is able to encode useful information on the physics of the problem from the approximate governing differential equation and hence, provides accurate prediction even in zones with no data. Additionally, no low-fidelity data is required for training this model. Applicability and utility of MF-PIDNN are illustrated in solving four benchmark reliability analysis problems. Case studies to illustrate interesting features of the proposed approach are also presented.



page 1

page 2

page 3

page 4


A Data-driven Multi-fidelity Physics-informed Learning Framework for Smart Manufacturing: A Composites Processing Case Study

Despite the successful implementations of physics-informed neural networ...

Efficient Training of Transfer Mapping in Physics-Infused Machine Learning Models of UAV Acoustic Field

Physics-Infused Machine Learning (PIML) architectures aim at integrating...

Simulation free reliability analysis: A physics-informed deep learning based approach

This paper presents a simulation free framework for solving reliability ...

Multifidelity Modeling for Physics-Informed Neural Networks (PINNs)

Multifidelity simulation methodologies are often used in an attempt to j...

Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow

Transfer learning (TL) is becoming a powerful tool in scientific applica...

Transfer learning enhanced physics informed neural network for phase-field modeling of fracture

We present a new physics informed neural network (PINN) algorithm for so...

A transfer learning enhanced the physics-informed neural network model for vortex-induced vibration

Vortex-induced vibration (VIV) is a typical nonlinear fluid-structure in...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.