DeepAI AI Chat
Log In Sign Up

Transfer Learning Approach to Bicycle-sharing Systems' Station Location Planning using OpenStreetMap Data

by   Kamil Raczycki, et al.

Bicycle-sharing systems (BSS) have become a daily reality for many citizens of larger, wealthier cities in developed regions. However, planning the layout of bicycle-sharing stations usually requires expensive data gathering, surveying travel behavior and trip modelling followed by station layout optimization. Many smaller cities and towns, especially in developing areas, may have difficulty financing such projects. Planning a BSS also takes a considerable amount of time. Yet as the pandemic has shown us, municipalities will face the need to adapt rapidly to mobility shifts, which include citizens leaving public transport for bicycles. Laying out a bike sharing system quickly will become critical in addressing the increase in bike demand. This paper addresses the problem of cost and time in BSS layout design and proposes a new solution to streamline and facilitate the process of such planning by using spatial embedding methods. Based only on publicly available data from OpenStreetMap, and station layouts from 34 cities in Europe, a method has been developed to divide cities into micro-regions using the Uber H3 discrete global grid system and to indicate regions where it is worth placing a station based on existing systems in different cities using transfer learning. The result of the work is a mechanism to support planners in their decision making when planning a station layout with a choice of reference cities.


page 1

page 4

page 6

page 8

page 9


Predicting the Location of Bicycle-sharing Stations using OpenStreetMap Data

Planning the layout of bicycle-sharing stations is a complex process, es...

Deep trip generation with graph neural networks for bike sharing system expansion

Bike sharing is emerging globally as an active, convenient, and sustaina...

Simulation study on the fleet performance of shared autonomous bicycles

Rethinking cities is now more imperative than ever, as society faces glo...

Um banco de dados de empregos formais georreferenciados em cidades brasileiras

Currently, transport planning has changed its paradigm from projects ori...

STDI-Net: Spatial-Temporal Network with Dynamic Interval Mapping for Bike Sharing Demand Prediction

As an economical and healthy mode of shared transportation, Bike Sharing...

Quantifying out-of-station waiting time in oversaturated urban metro systems

Metro systems in megacities such as Beijing, Shenzhen and Guangzhou are ...