Transfer Learning and SpecAugment applied to SSVEP Based BCI Classification
In this work, we used a deep convolutional neural network (DCNN) to classify electroencephalography (EEG) signals in a steady-state visually evoked potentials (SSVEP) based brain-computer interface (BCI). The raw EEG signals were converted to spectrograms and served as input to train a DCNN using the transfer learning technique. We applied a second technique, data augmentation, mostly SpecAugment, generally employed to speech recognition. The results, when excluding the evaluated user's data from the fine-tuning process, reached 99.3 mean test accuracy and 0.992 mean F1 score on 35 subjects from an open dataset.
READ FULL TEXT