Transductive-Inductive Cluster Approximation Via Multivariate Chebyshev Inequality

01/19/2011
by   Shriprakash Sinha, et al.
0

Approximating adequate number of clusters in multidimensional data is an open area of research, given a level of compromise made on the quality of acceptable results. The manuscript addresses the issue by formulating a transductive inductive learning algorithm which uses multivariate Chebyshev inequality. Considering clustering problem in imaging, theoretical proofs for a particular level of compromise are derived to show the convergence of the reconstruction error to a finite value with increasing (a) number of unseen examples and (b) the number of clusters, respectively. Upper bounds for these error rates are also proved. Non-parametric estimates of these error from a random sample of sequences empirically point to a stable number of clusters. Lastly, the generalization of algorithm can be applied to multidimensional data sets from different fields.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro