Trajectory Tracking Control of Skid-Steering Mobile Robots with Slip and Skid Compensation using Sliding-Mode Control and Deep Learning
Slip and skid compensation is crucial for mobile robots' navigation in outdoor environments and uneven terrains. In addition to the general slipping and skidding hazards for mobile robots in outdoor environments, slip and skid cause uncertainty for the trajectory tracking system and put the validity of stability analysis at risk. Despite research in this field, having a real-world feasible online slip and skid compensation is still challenging due to the complexity of wheel-terrain interaction in outdoor environments. This paper presents a novel trajectory tracking technique with real-world feasible online slip and skid compensation at the vehicle-level for skid-steering mobile robots in outdoor environments. The sliding mode control technique is utilized to design a robust trajectory tracking system to be able to consider the parameter uncertainty of this type of robot. Two previously developed deep learning models [1], [2] are integrated into the control feedback loop to estimate the robot's slipping and undesired skidding and feed the compensator in a real-time manner. The main advantages of the proposed technique are (1) considering two slip-related parameters rather than the conventional three slip parameters at the wheel-level, and (2) having an online real-world feasible slip and skid compensator to be able to reduce the tracking errors in unforeseen environments. The experimental results show that the proposed controller with the slip and skid compensator improves the performance of the trajectory tracking system by more than 27
READ FULL TEXT