Trajectory Generation for Multiagent Point-To-Point Transitions via Distributed Model Predictive Control

09/12/2018
by   Carlos E. Luis, et al.
0

This paper introduces a novel algorithm for multiagent offline trajectory generation based on distributed model predictive control (DMPC). By predicting future states and sharing this information with their neighbours, the agents are able to detect and avoid collisions while moving towards their goals. The proposed algorithm computes transition trajectories for dozens of vehicles in a few seconds. It reduces the computation time by more than 85 previous optimization approaches based on sequential convex programming (SCP), with only causing a small impact on the optimality of the plans. We replaced the previous compatibility constraints in DMPC, which limit the motion of the agents in order to avoid collisions, by relaxing the collision constraints and enforcing them only when required. The approach was validated both through extensive simulations for a wide range of randomly generated transitions and with teams of up to 25 quadrotors flying in confined indoor spaces.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset