Trajectory-based Algorithm Selection with Warm-starting

04/13/2022
by   Anja Jankovic, et al.
2

Landscape-aware algorithm selection approaches have so far mostly been relying on landscape feature extraction as a preprocessing step, independent of the execution of optimization algorithms in the portfolio. This introduces a significant overhead in computational cost for many practical applications, as features are extracted and computed via sampling and evaluating the problem instance at hand, similarly to what the optimization algorithm would perform anyway within its search trajectory. As suggested in Jankovic et al. (EvoAPPs 2021), trajectory-based algorithm selection circumvents the problem of costly feature extraction by computing landscape features from points that a solver sampled and evaluated during the optimization process. Features computed in this manner are used to train algorithm performance regression models, upon which a per-run algorithm selector is then built. In this work, we apply the trajectory-based approach onto a portfolio of five algorithms. We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances after a fixed budget of function evaluations. We rely on landscape features of the problem instance computed using one portion of the aforementioned budget of the same function evaluations. Moreover, we consider the possibility of switching between the solvers once, which requires them to be warm-started, i.e. when we switch, the second solver continues the optimization process already being initialized appropriately by making use of the information collected by the first solver. In this new context, we show promising performance of the trajectory-based per-run algorithm selection with warm-starting.

READ FULL TEXT

page 1

page 5

page 6

page 7

page 8

research
04/20/2022

Per-run Algorithm Selection with Warm-starting using Trajectory-based Features

Per-instance algorithm selection seeks to recommend, for a given problem...
research
02/17/2023

To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features

Dynamic algorithm selection aims to exploit the complementarity of multi...
research
02/10/2021

Towards Feature-Based Performance Regression Using Trajectory Data

Black-box optimization is a very active area of research, with many new ...
research
06/17/2020

Landscape-Aware Fixed-Budget Performance Regression and Algorithm Selection for Modular CMA-ES Variants

Automated algorithm selection promises to support the user in the decisi...
research
10/22/2021

Explainable Landscape-Aware Optimization Performance Prediction

Efficient solving of an unseen optimization problem is related to approp...
research
04/19/2021

The Impact of Hyper-Parameter Tuning for Landscape-Aware Performance Regression and Algorithm Selection

Automated algorithm selection and configuration methods that build on ex...
research
09/28/2021

Extensible Logging and Empirical Attainment Function for IOHexperimenter

In order to allow for large-scale, landscape-aware, per-instance algorit...

Please sign up or login with your details

Forgot password? Click here to reset