Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation

03/15/2018
by   P. Meletis, et al.
0

We propose a convolutional network with hierarchical classifiers for per-pixel semantic segmentation, which is able to be trained on multiple, heterogeneous datasets and exploit their semantic hierarchy. Our network is the first to be simultaneously trained on three different datasets from the intelligent vehicles domain, i.e. Cityscapes, GTSDB and Mapillary Vistas, and is able to handle different semantic level-of-detail, class imbalances, and different annotation types, i.e. dense per-pixel and sparse bounding-box labels. We assess our hierarchical approach, by comparing against flat, non-hierarchical classifiers and we show improvements in mean pixel accuracy of 13.0 classes. Our implementation achieves inference rates of 17 fps at a resolution of 520 x 706 for 108 classes running on a GPU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro