Tracking Single-Cells in Overcrowded Bacterial Colonies

06/22/2017
by   Athanasios D. Balomenos, et al.
0

Cell tracking enables data extraction from time-lapse "cell movies" and promotes modeling biological processes at the single-cell level. We introduce a new fully automated computational strategy to track accurately cells across frames in time-lapse movies. Our method is based on a dynamic neighborhoods formation and matching approach, inspired by motion estimation algorithms for video compression. Moreover, it exploits "divide and conquer" opportunities to solve effectively the challenging cells tracking problem in overcrowded bacterial colonies. Using cell movies generated by different labs we demonstrate that the accuracy of the proposed method remains very high (exceeds 97

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro