TPARN: Triple-path Attentive Recurrent Network for Time-domain Multichannel Speech Enhancement

10/20/2021
by   Ashutosh Pandey, et al.
0

In this work, we propose a new model called triple-path attentive recurrent network (TPARN) for multichannel speech enhancement in the time domain. TPARN extends a single-channel dual-path network to a multichannel network by adding a third path along the spatial dimension. First, TPARN processes speech signals from all channels independently using a dual-path attentive recurrent network (ARN), which is a recurrent neural network (RNN) augmented with self-attention. Next, an ARN is introduced along the spatial dimension for spatial context aggregation. TPARN is designed as a multiple-input and multiple-output architecture to enhance all input channels simultaneously. Experimental results demonstrate the superiority of TPARN over existing state-of-the-art approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset