Towards understanding feedback from supermassive black holes using convolutional neural networks

12/02/2017
by   Stanislav Fort, et al.
0

Supermassive black holes at centers of clusters of galaxies strongly interact with their host environment via AGN feedback. Key tracers of such activity are X-ray cavities -- regions of lower X-ray brightness within the cluster. We present an automatic method for detecting, and characterizing X-ray cavities in noisy, low-resolution X-ray images. We simulate clusters of galaxies, insert cavities into them, and produce realistic low-quality images comparable to observations at high redshifts. We then train a custom-built convolutional neural network to generate pixel-wise analysis of presence of cavities in a cluster. A ResNet architecture is then used to decode radii of cavities from the pixel-wise predictions. We surpass the accuracy, stability, and speed of current visual inspection based methods on simulated data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset