Towards Trustworthy Cross-patient Model Development

12/20/2021
by   Ali El-Merhi, et al.
0

Machine learning is used in medicine to support physicians in examination, diagnosis, and predicting outcomes. One of the most dynamic area is the usage of patient generated health data from intensive care units. The goal of this paper is to demonstrate how we advance cross-patient ML model development by combining the patient's demographics data with their physiological data. We used a population of patients undergoing Carotid Enderarterectomy (CEA), where we studied differences in model performance and explainability when trained for all patients and one patient at a time. The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness. We conclude that we can increase trust in ML models in a cross-patient context, by careful selection of models and patients based on their demographics and the surgical procedure.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset