Towards Trust of Explainable AI in Thyroid Nodule Diagnosis

03/08/2023
by   Truong Thanh Hung Nguyen, et al.
0

The ability to explain the prediction of deep learning models to end-users is an important feature to leverage the power of artificial intelligence (AI) for the medical decision-making process, which is usually considered non-transparent and challenging to comprehend. In this paper, we apply state-of-the-art eXplainable artificial intelligence (XAI) methods to explain the prediction of the black-box AI models in the thyroid nodule diagnosis application. We propose new statistic-based XAI methods, namely Kernel Density Estimation and Density map, to explain the case of no nodule detected. XAI methods' performances are considered under a qualitative and quantitative comparison as feedback to improve the data quality and the model performance. Finally, we survey to assess doctors' and patients' trust in XAI explanations of the model's decisions on thyroid nodule images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro