Towards the Maximum Traffic Demand and Throughput Supported by Relay-Assisted mmWave Backhaul Networks
This paper investigates the throughput performance issue of the relay-assisted mmWave backhaul network. The maximum traffic demand of small-cell base stations (BSs) and the maximum throughput at the macro-cell BS have been found in a tree-style backhaul network through linear programming under different network settings, which concern both the number of radio chains available on BSs and the interference relationship between logical links in the backhaul network. A novel interference model for the relay-assisted mmWave backhaul network in the dense urban environment is proposed, which demonstrates the limited interference footprint of mmWave directional communications. Moreover, a scheduling algorithm is developed to find the optimal scheduling for tree-style mmWave backhaul networks. Extensive numerical analysis and simulations are conducted to show and validate the network throughput performance and the scheduling algorithm.
READ FULL TEXT