Towards Principled Design of Deep Convolutional Networks: Introducing SimpNet

02/17/2018 ∙ by Seyyed Hossein Hasanpour, et al. ∙ 0

Major winning Convolutional Neural Networks (CNNs), such as VGGNet, ResNet, DenseNet, , include tens to hundreds of millions of parameters, which impose considerable computation and memory overheads. This limits their practical usage in training and optimizing for real-world applications. On the contrary, light-weight architectures, such as SqueezeNet, are being proposed to address this issue. However, they mainly suffer from low accuracy, as they have compromised between the processing power and efficiency. These inefficiencies mostly stem from following an ad-hoc designing procedure. In this work, we discuss and propose several crucial design principles for an efficient architecture design and elaborate intuitions concerning different aspects of the design procedure. Furthermore, we introduce a new layer called SAF-pooling to improve the generalization power of the network while keeping it simple by choosing best features. Based on such principles, we propose a simple architecture called SimpNet. We empirically show that SimpNet provides a good trade-off between the computation/memory efficiency and the accuracy solely based on these primitive but crucial principles. SimpNet outperforms the deeper and more complex architectures such as VGGNet, ResNet, WideResidualNet , on several well-known benchmarks, while having 2 to 25 times fewer number of parameters and operations. We obtain state-of-the-art results (in terms of a balance between the accuracy and the number of involved parameters) on standard datasets, such as CIFAR10, CIFAR100, MNIST and SVHN. The implementations are available at urlhttps://github.com/Coderx7/SimpNet.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 8

page 15

page 17

page 18

Code Repositories

SimpNet

SimpNet Paper Files (Towards Principled Design of Deep Convolutional Networks: Introducing SimpNet)


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.