Towards Open-Text Semantic Parsing via Multi-Task Learning of Structured Embeddings

07/19/2011
by   Antoine Bordes, et al.
0

Open-text (or open-domain) semantic parsers are designed to interpret any statement in natural language by inferring a corresponding meaning representation (MR). Unfortunately, large scale systems cannot be easily machine-learned due to lack of directly supervised data. We propose here a method that learns to assign MRs to a wide range of text (using a dictionary of more than 70,000 words, which are mapped to more than 40,000 entities) thanks to a training scheme that combines learning from WordNet and ConceptNet with learning from raw text. The model learns structured embeddings of words, entities and MRs via a multi-task training process operating on these diverse sources of data that integrates all the learnt knowledge into a single system. This work ends up combining methods for knowledge acquisition, semantic parsing, and word-sense disambiguation. Experiments on various tasks indicate that our approach is indeed successful and can form a basis for future more sophisticated systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro