Towards non-toxic landscapes: Automatic toxic comment detection using DNN

11/19/2019 ∙ by Ashwin Geet D'Sa, et al. ∙ 0

The spectacular expansion of the Internet led to the development of a new research problem in the natural language processing field: automatic toxic comment detection, since many countries prohibit hate speech in public media. There is no clear and formal definition of hate, offensive, toxic and abusive speeches. In this article, we put all these terms under the "umbrella" of toxic speech. The contribution of this paper is the design of binary classification and regression-based approaches aiming to predict whether a comment is toxic or not. We compare different unsupervised word representations and different DNN classifiers. Moreover, we study the robustness of the proposed approaches to adversarial attacks by adding one (healthy or toxic) word. We evaluate the proposed methodology on the English Wikipedia Detox corpus. Our experiments show that using BERT fine-tuning outperforms feature-based BERT, Mikolov's word embedding or fastText representations with different DNN classifiers.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.