Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

by   Seyed Majid Azimi, et al.

Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging new DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). best results in the leader-board are 54.13% and 60.46%. Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.



There are no comments yet.


page 4

page 11

page 12

page 13


EAGLE: Large-scale Dataset for Vehicle Detection in Aerial Imagery

Multi-class vehicle detection from airborne imagery with orientation est...

Rotation Equivariant Feature Image Pyramid Network for Object Detection in Optical Remote Sensing Imagery

Over the last few years, there has been substantial progress in object d...

Learning Orientation-Estimation Convolutional Neural Network for Building Detection in Optical Remote Sensing Image

Benefiting from the great success of deep learning in computer vision, C...

Optimization for Oriented Object Detection via Representation Invariance Loss

Arbitrary-oriented objects exist widely in natural scenes, and thus the ...

Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multiscale Rotation Region Convolutional Neural Network

Ship detection is of great importance and full of challenges in the fiel...

A Novel CNN-based Method for Accurate Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box

Currently, reliable and accurate ship detection in optical remote sensin...

Learning Oriented Remote Sensing Object Detection via Naive Geometric Computing

Detecting oriented objects along with estimating their rotation informat...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.