Towards more scientific meta-analyses
Meta-analysis can be a critical part of the research process, often serving as the primary analysis on which the practitioners, policymakers, and individuals base their decisions. However, current literature synthesis approaches to meta-analysis typically estimate a different quantity than what is implicitly intended; concretely, standard approaches estimate the average effect of a treatment for a population of imperfect studies, rather than the true scientific effect that would be measured in a population of hypothetical perfect studies. We advocate for an alternative method, called response-surface meta-analysis, which models the relationship between the quality of the study design as predictor variables and its reported estimated effect size as the outcome variable in order to estimate the effect size obtained by the hypothetical ideal study. The idea was first introduced by Rubin several decades ago, and here we provide a practical implementation. First, we reintroduce the idea of response-surface meta-analysis, highlighting its focus on a scientifically-motivated estimand while proposing a straightforward implementation. Then we compare the approach to traditional meta-analysis techniques used in practice. We then implement response-surface meta-analysis and contrast its results with existing literature-synthesis approaches on both simulated data and a real-world example published by the Cochrane Collaboration. We conclude by detailing the primary challenges in the implementation of response-surface meta-analysis and offer some suggestions to tackle these challenges.
READ FULL TEXT