Towards Modality Transferable Visual Information Representation with Optimal Model Compression

08/13/2020 ∙ by Rongqun Lin, et al. ∙ 7

Compactly representing the visual signals is of fundamental importance in various image/video-centered applications. Although numerous approaches were developed for improving the image and video coding performance by removing the redundancies within visual signals, much less work has been dedicated to the transformation of the visual signals to another well-established modality for better representation capability. In this paper, we propose a new scheme for visual signal representation that leverages the philosophy of transferable modality. In particular, the deep learning model, which characterizes and absorbs the statistics of the input scene with online training, could be efficiently represented in the sense of rate-utility optimization to serve as the enhancement layer in the bitstream. As such, the overall performance can be further guaranteed by optimizing the new modality incorporated. The proposed framework is implemented on the state-of-the-art video coding standard (i.e., versatile video coding), and significantly better representation capability has been observed based on extensive evaluations.



There are no comments yet.


page 3

page 7

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.