Towards Manipulability of Interactive Lagrangian Systems

06/18/2018
by   Hanlei Wang, et al.
0

This paper investigates manipulability of interactive Lagrangian systems with parametric uncertainty and communication/sensing constraints. Two standard examples are teleoperation with a master-slave system and teaching operation of robots. We here systematically formulate the concept of infinite manipulability for general dynamical systems, and investigate how such a unified motivation yields a design paradigm towards guaranteeing the infinite manipulability of interactive dynamical systems and in particular facilitates the design and analysis of nonlinear adaptive controllers for interactive Lagrangian systems. Specifically, based on a new class of dynamic feedback, we propose adaptive controllers that achieve both the infinite manipulability of the controlled Lagrangian systems and the robustness with respect to the communication/sensing constraints, mainly owing to the resultant dynamic-cascade framework. The proposed paradigm yields the desirable balance between network coupling requirements and controlled dynamics of human-system interaction. We also show that a special case of our main result resolves the longstanding nonlinear bilateral teleoperation problem with arbitrary unknown time-varying delay. Simulation results show the performance of the interactive robotic systems under the proposed adaptive controllers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro