Towards End-to-end Car License Plate Location and Recognition in Unconstrained Scenarios
Benefiting from the rapid development of convolutional neural networks, the performance of car license plate detection and recognition has been largely improved. Nonetheless, challenges still exist especially for real-world applications. In this paper, we present an efficient and accurate framework to solve the license plate detection and recognition tasks simultaneously. It is a lightweight and unified deep neural network, that can be optimized end-to-end and work in real-time. Specifically, for unconstrained scenarios, an anchor-free method is adopted to efficiently detect the bounding box and four corners of a license plate, which are used to extract and rectify the target region features. Then, a novel convolutional neural network branch is designed to further extract features of characters without segmentation. Finally, recognition task is treated as sequence labelling problems, which are solved by Connectionist Temporal Classification (CTC) directly. Several public datasets including images collected from different scenarios under various conditions are chosen for evaluation. A large number of experiments indicate that the proposed method significantly outperforms the previous state-of-the-art methods in both speed and precision.
READ FULL TEXT