Towards context in large scale biomedical knowledge graphs
Contextual information is widely considered for NLP and knowledge discovery in life sciences since it highly influences the exact meaning of natural language. The scientific challenge is not only to extract such context data, but also to store this data for further query and discovery approaches. Here, we propose a multiple step knowledge graph approach using labeled property graphs based on polyglot persistence systems to utilize context data for context mining, graph queries, knowledge discovery and extraction. We introduce the graph-theoretic foundation for a general context concept within semantic networks and show a proof-of-concept based on biomedical literature and text mining. Our test system contains a knowledge graph derived from the entirety of PubMed and SCAIView data and is enriched with text mining data and domain specific language data using BEL. Here, context is a more general concept than annotations. This dense graph has more than 71M nodes and 850M relationships. We discuss the impact of this novel approach with 27 real world use cases represented by graph queries.
READ FULL TEXT