Towards Better Interpretability in Deep Q-Networks

Deep reinforcement learning techniques have demonstrated superior performance in a wide variety of environments. As improvements in training algorithms continue at a brisk pace, theoretical or empirical studies on understanding what these networks seem to learn, are far behind. In this paper we propose an interpretable neural network architecture for Q-learning which provides a global explanation of the model's behavior using key-value memories, attention and reconstructible embeddings. With a directed exploration strategy, our model can reach training rewards comparable to the state-of-the-art deep Q-learning models. However, results suggest that the features extracted by the neural network are extremely shallow and subsequent testing using out-of-sample examples shows that the agent can easily overfit to trajectories seen during training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset