Towards an Intelligent Edge: Wireless Communication Meets Machine Learning

09/02/2018 ∙ by Guangxu Zhu, et al. ∙ 0

The recent revival of artificial intelligence (AI) is revolutionizing almost every branch of science and technology. Given the ubiquitous smart mobile gadgets and Internet of Things (IoT) devices, it is expected that a majority of intelligent applications will be deployed at the edge of wireless networks. This trend has generated strong interests in realizing an "intelligent edge" to support AI-enabled applications at various edge devices. Accordingly, a new research area, called edge learning, emerges, which crosses and revolutionizes two disciplines: wireless communication and machine learning. A major theme in edge learning is to overcome the limited computing power, as well as limited data, at each edge device. This is accomplished by leveraging the mobile edge computing (MEC) platform and exploiting the massive data distributed over a large number of edge devices. In such systems, learning from distributed data and communicating between the edge server and devices are two critical and coupled aspects, and their fusion poses many new research challenges. This article advocates a new set of design principles for wireless communication in edge learning, collectively called learning-driven communication. Illustrative examples are provided to demonstrate the effectiveness of these design principles, and unique research opportunities are identified.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.