Towards Accommodating Real-time Jobs on HPC Platforms

03/24/2021 ∙ by Sam Nickolay, et al. ∙ 0

Increasing data volumes in scientific experiments necessitate the use of high-performance computing (HPC) resources for data analysis. In many scientific fields, the data generated from scientific instruments and supercomputer simulations must be analyzed rapidly. In fact, the requirement for quasi-instant feedback is growing. Scientists want to use results from one experiment to guide the selection of the next or even to improve the course of a single experiment. Current HPC systems are typically batch-scheduled under policies in which an arriving job is run immediately only if enough resources are available; otherwise, it is queued. It is hard for these systems to support real-time jobs. Real-time jobs, in order to meet their requirements, should sometimes have to preempt batch jobs and/or be scheduled ahead of batch jobs that were submitted earlier. Accommodating real-time jobs may negatively impact system utilization also, especially when preemption/restart of batch jobs is involved. We first explore several existing scheduling strategies to make real-time jobs more likely to be scheduled in due time. We then rigorously formulate the problem as a mixed-integer linear programming for offline scheduling and develop novel scheduling heuristics for online scheduling. We perform simulation studies using trace logs of Mira, the IBM BG/Q system at Argonne National Laboratory, to quantify the impact of real-time jobs on batch job performance for various percentages of real-time jobs in the workload. We present new insights gained from grouping jobs into different categories based on runtime and the number of nodes used and studying the performance of each category. Our results show that with 10 just-in-time checkpointing combined with our heuristic can improve the slowdowns of real-time jobs by 35 of batch jobs to 10



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.