Towards a Theory of Domains for Harmonic Functions and its Symbolic Counterpart

10/26/2021
by   van Chiên Bui, et al.
0

In this paper, we begin by reviewing the calculus induced by the framework of [10]. In there, we extended Polylogarithm functions over a subalgebra of noncommutative rational power series, recognizable by finite state (multiplicity) automata over the alphabet X = x 0 , x 1 . The stability of this calculus under shuffle products relies on the nuclearity of the target space [31]. We also concentrated on algebraic and analytic aspects of this extension allowing to index polylogarithms, at non positive multi-indices, by rational series and also allowing to regularize divergent polyzetas, at non positive multi-indices [10]. As a continuation of works in [10] and in order to understand the bridge between the extension of this "polylogarithmic calculus" and the world of harmonic sums, we propose a local theory, adapted to a full calculus on indices of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms with index x 1 on the rightmost end. This theory is not only compatible with Stuffle products but also with the Analytic Model. In this respect, it provides a stable and fully algorithmic model for Harmonic calculus. Examples by computer are also provided 6 .

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro