DeepAI AI Chat
Log In Sign Up

Towards a Minimal Stabilizer ZX-calculus

by   Miriam Backens, et al.
University of Oxford

The stabilizer ZX-calculus is a rigorous graphical language for reasoning about quantum mechanics. The language is sound and complete: one can transform a stabilizer ZX-diagram into another one if and only if these two diagrams represent the same quantum evolution or quantum state. We show that the stabilizer ZX-calculus can be simplified, removing unnecessary equations while keeping only the essential axioms which potentially capture fundamental structures of quantum mechanics. We thus give a significantly smaller set of axioms and prove that meta-rules like `only the topology matters', `colour symmetry' and `upside-down symmetry', which were considered as axioms in previous versions of the language, can in fact be derived. In particular, we show that most of the remaining rules of the language are necessary, however leaving as an open question the necessity of two rules. These include, surprisingly, the bialgebra rule, which is an axiomatisation of complementarity, the cornerstone of the ZX-calculus. Furthermore, we show that a weaker ambient category -- a braided autonomous category instead of the usual compact closed category -- is sufficient to recover the topology meta rule.


page 1

page 2

page 3

page 4


PBS-calculus: A Graphical Language for Quantum-Controlled Computations

We introduce the PBS-calculus to represent and reason on quantum computa...

Quantum CPOs

We introduce the monoidal closed category qCPO of quantum cpos, whose ob...

The rational fragment of the ZX-calculus

We introduce here a new axiomatisation of the rational fragment of the Z...

Kindergarden quantum mechanics graduates (...or how I learned to stop gluing LEGO together and love the ZX-calculus)

This paper is a `spiritual child' of the 2005 lecture notes Kindergarten...

Completeness of the ZX-Calculus

The ZX-Calculus is a graphical language for diagrammatic reasoning in qu...

Circuit Relations for Real Stabilizers: Towards TOF+H

The real stabilizer fragment of quantum mechanics was shown to have a co...

Open Diagrams via Coend Calculus

Morphisms in a monoidal category are usually interpreted as processes, a...