Towards A Learning-Based Framework for Self-Driving Design of Networking Protocols
Networking protocols are designed through long-time and hard-work human efforts. Machine Learning (ML)-based solutions have been developed for communication protocol design to avoid manual efforts to tune individual protocol parameters. While other proposed ML-based methods mainly focus on tuning individual protocol parameters (e.g., adjusting contention window), our main contribution is to propose a novel Deep Reinforcement Learning (DRL)-based framework to systematically design and evaluate networking protocols. We decouple a protocol into a set of parametric modules, each representing a main protocol functionality that is used as DRL input to better understand the generated protocols design optimization and analyze them in a systematic fashion. As a case study, we introduce and evaluate DeepMAC a framework in which a MAC protocol is decoupled into a set of blocks across popular flavors of 802.11 WLANs (e.g., 802.11 b/a/g/n/ac). We are interested to see what blocks are selected by DeepMAC across different networking scenarios and whether DeepMAC is able to adapt to network dynamics.
READ FULL TEXT