Towards a Goal-oriented Agent-based Simulation framework for High-Performance Computing

11/22/2019 ∙ by Dmitry Gnatyshak, et al. ∙ 0

Currently, agent-based simulation frameworks force the user to choose between simulations involving a large number of agents (at the expense of limited agent reasoning capability) or simulations including agents with increased reasoning capabilities (at the expense of a limited number of agents per simulation). This paper describes a first attempt at putting goal-oriented agents into large agent-based (micro-)simulations. We discuss a model for goal-oriented agents in High-Performance Computing (HPC) and then briefly discuss its implementation in PyCOMPSs (a library that eases the parallelisation of tasks) to build such a platform that benefits from a large number of agents with the capacity to execute complex cognitive agents.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.