Toward more accurate and generalizable brain deformation estimators for traumatic brain injury detection with unsupervised domain adaptation

06/08/2023
by   Xianghao Zhan, et al.
0

Machine learning head models (MLHMs) are developed to estimate brain deformation for early detection of traumatic brain injury (TBI). However, the overfitting to simulated impacts and the lack of generalizability caused by distributional shift of different head impact datasets hinders the broad clinical applications of current MLHMs. We propose brain deformation estimators that integrates unsupervised domain adaptation with a deep neural network to predict whole-brain maximum principal strain (MPS) and MPS rate (MPSR). With 12,780 simulated head impacts, we performed unsupervised domain adaptation on on-field head impacts from 302 college football (CF) impacts and 457 mixed martial arts (MMA) impacts using domain regularized component analysis (DRCA) and cycle-GAN-based methods. The new model improved the MPS/MPSR estimation accuracy, with the DRCA method significantly outperforming other domain adaptation methods in prediction accuracy (p<0.001): MPS RMSE: 0.027 (CF) and 0.037 (MMA); MPSR RMSE: 7.159 (CF) and 13.022 (MMA). On another two hold-out test sets with 195 college football impacts and 260 boxing impacts, the DRCA model significantly outperformed the baseline model without domain adaptation in MPS and MPSR estimation accuracy (p<0.001). The DRCA domain adaptation reduces the MPS/MPSR estimation error to be well below TBI thresholds, enabling accurate brain deformation estimation to detect TBI in future clinical applications.

READ FULL TEXT

page 1

page 3

page 6

research
10/16/2020

Deep Learning Head Model for Real-time Estimation of Entire Brain Deformation in Concussion

Objective: Many recent studies have suggested that brain deformation res...
research
08/31/2021

Rapidly and accurately estimating brain strain and strain rate across head impact types with transfer learning and data fusion

Brain strain and strain rate are effective in predicting traumatic brain...
research
10/27/2021

Data-driven decomposition of brain dynamics with principal component analysis in different types of head impacts

Strain and strain rate are effective traumatic brain injury predictors. ...
research
12/18/2020

Prediction of brain strain across head impact subtypes using 18 brain injury criteria

Multiple brain injury criteria (BIC) are developed to quickly quantify b...
research
08/15/2022

Benchmarking Validation Methods for Unsupervised Domain Adaptation

This paper compares and ranks 11 UDA validation methods. Validators esti...
research
02/09/2021

Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation

Brain tissue deformation resulting from head impacts is primarily caused...
research
12/28/2021

Unsupervised Domain Adaptation for Constraining Star Formation Histories

The prevalent paradigm of machine learning today is to use past observat...

Please sign up or login with your details

Forgot password? Click here to reset