Toward Efficient and Robust Biped Walking Optimization

07/26/2018
by   Nihar Talele, et al.
0

Practical bipedal robot locomotion needs to be both energy efficient and robust to variability and uncertainty. In this paper, we build upon recent works in trajectory optimization for robot locomotion with two primary goals. First, we wish to demonstrate the importance of (a) considering and quantifying not only energy efficiency but also robustness of gaits, and (b) optimization not only of nominal motion trajectories but also of robot design parameters and feedback control policies. As a second, complementary focus, we present results from optimization studies on a 5-link planar walking model, to provide preliminary data on particular trade-offs and general trends in improving efficiency versus robustness. In addressing important, open challenges, we focus in particular on discussions of the effects of choices made (a) in formulating what is always, necessarily only an approximate optimization, in choosing metrics for performance, and (b) in structuring and tuning feedback control.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
04/04/2021

Learning Linear Policies for Robust Bipedal Locomotion on Terrains with Varying Slopes

In this paper, with a view toward deployment of light-weight control fra...
research
07/30/2022

Bipedal Locomotion Optimization by Exploitation of the Full Dynamics in DCM Trajectory Planning

Walking motion planning based on Divergent Component of Motion (DCM) and...
research
07/07/2022

Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion

The paper presents a planner to generate walking trajectories by using t...
research
07/30/2020

Understanding the Stability of Deep Control Policies for Biped Locomotion

Achieving stability and robustness is the primary goal of biped locomoti...
research
12/01/2022

Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion

Animals run robustly in diverse terrain. This locomotion robustness is p...
research
06/03/2021

Traversing Steep and Granular Martian Analog Slopes With a Dynamic Quadrupedal Robot

Celestial bodies such as the Moon and Mars are mainly covered by loose, ...
research
10/30/2020

Robust Quadrupedal Locomotion on Sloped Terrains: A Linear Policy Approach

In this paper, with a view toward fast deployment of locomotion gaits in...

Please sign up or login with your details

Forgot password? Click here to reset