Total insecurity of communication via strong converse for quantum privacy amplification
Quantum privacy amplification is a central task in quantum cryptography. Given shared randomness, which is initially correlated with a quantum system held by an eavesdropper, the goal is to extract uniform randomness which is decoupled from the latter. The optimal rate for this task is known to satisfy the strong converse property and we provide a lower bound on the corresponding strong converse exponent. In the strong converse region, the distance of the final state of the protocol from the desired decoupled state converges exponentially fast to its maximal value, in the asymptotic limit. We show that this necessarily leads to totally insecure communication by establishing that the eavesdropper can infer any sent messages with certainty, when given very limited extra information. In fact, we prove that in the strong converse region, the eavesdropper has an exponential advantage in inferring the sent message correctly, compared to the achievability region. Additionally we establish the following technical result, which is central to our proofs, and is of independent interest: the smoothing parameter for the smoothed max-relative entropy satisfies the strong converse property.
READ FULL TEXT