Topological Data Analysis of Decision Boundaries with Application to Model Selection

We propose the labeled Čech complex, the plain labeled Vietoris-Rips complex, and the locally scaled labeled Vietoris-Rips complex to perform persistent homology inference of decision boundaries in classification tasks. We provide theoretical conditions and analysis for recovering the homology of a decision boundary from samples. Our main objective is quantification of deep neural network complexity to enable matching of datasets to pre-trained models; we report results for experiments using MNIST, FashionMNIST, and CIFAR10.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset