Topological Autoencoders

06/03/2019
by   Michael Moor, et al.
1

We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we can construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded, while exhibiting favourable latent representations on synthetic manifold data sets. Moreover, on real-world data sets, introducing our topological loss leads to more meaningful latent representations while preserving low reconstruction errors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset