TomoSLAM: factor graph optimization for rotation angle refinement in microtomography

by   Mark Griguletskii, et al.

In computed tomography (CT), the relative trajectories of a sample, a detector, and a signal source are traditionally considered to be known, since they are caused by the intentional preprogrammed movement of the instrument parts. However, due to the mechanical backlashes, rotation sensor measurement errors, thermal deformations real trajectory differs from desired ones. This negatively affects the resulting quality of tomographic reconstruction. Neither the calibration nor preliminary adjustments of the device completely eliminates the inaccuracy of the trajectory but significantly increase the cost of instrument maintenance. A number of approaches to this problem are based on an automatic refinement of the source and sensor position estimate relative to the sample for each projection (at each time step) during the reconstruction process. A similar problem of position refinement while observing different images of an object from different angles is well known in robotics (particularly, in mobile robots and self-driving vehicles) and is called Simultaneous Localization And Mapping (SLAM). The scientific novelty of this work is to consider the problem of trajectory refinement in microtomography as a SLAM problem. This is achieved by extracting Speeded Up Robust Features (SURF) features from X-ray projections, filtering matches with Random Sample Consensus (RANSAC), calculating angles between projections, and using them in factor graph in combination with stepper motor control signals in order to refine rotation angles.


page 4

page 8


1-point RANSAC for Circular Motion Estimation in Computed Tomography (CT)

This paper proposes a RANSAC-based algorithm for determining the axial r...

Wheel-SLAM: Simultaneous Localization and Terrain Mapping Using One Wheel-mounted IMU

A reliable pose estimator robust to environmental disturbances is desira...

Spherical acquisition trajectories for X-ray computed tomography with a robotic sample holder

This work presents methods for the seamless execution of arbitrary spher...

Analysis of Tomographic Reconstruction of 2D Images using the Distribution of Unknown Projection Angles

It is well known that a band-limited signal can be reconstructed from it...

Trajectory Tracking for Quadrotors with Attitude Control on S^2 ×S^1

The control of a quadrotor is typically split into two subsequent proble...

Quadcopter Tracking Using Euler-Angle-Free Flatness-Based Control

Quadcopter trajectory tracking control has been extensively investigated...

Optimization of a Moving Sensor Trajectory for Observing a Point Scalar Source in Turbulent Flow

We propose a strategy for optimizing a sensor trajectory in order to est...

Please sign up or login with your details

Forgot password? Click here to reset