To Share or Not To Share: A Comprehensive Appraisal of Weight-Sharing
Weight-sharing (WS) has recently emerged as a paradigm to accelerate the automated search for efficient neural architectures, a process dubbed Neural Architecture Search (NAS). Although very appealing, this framework is not without drawbacks and several works have started to question its capabilities on small hand-crafted benchmarks. In this paper, we take advantage of the NASBench-101 dataset to challenge the efficiency of WS on a representative search space. By comparing a SOTA WS approach to a plain random search we show that, despite decent correlations between evaluations using weight-sharing and standalone ones, WS is only rarely helpful to NAS. We highlight in particular the reliance of the benefits on the search space itself.
READ FULL TEXT