Time Series Domain Adaptation via Sparse Associative Structure Alignment

by   Ruichu Cai, et al.

Domain adaptation on time series data is an important but challenging task. Most of the existing works in this area are based on the learning of the domain-invariant representation of the data with the help of restrictions like MMD. However, such extraction of the domain-invariant representation is a non-trivial task for time series data, due to the complex dependence among the timestamps. In detail, in the fully dependent time series, a small change of the time lags or the offsets may lead to difficulty in the domain invariant extraction. Fortunately, the stability of the causality inspired us to explore the domain invariant structure of the data. To reduce the difficulty in the discovery of causal structure, we relax it to the sparse associative structure and propose a novel sparse associative structure alignment model for domain adaptation. First, we generate the segment set to exclude the obstacle of offsets. Second, the intra-variables and inter-variables sparse attention mechanisms are devised to extract associative structure time-series data with considering time lags. Finally, the associative structure alignment is used to guide the transfer of knowledge from the source domain to the target one. Experimental studies not only verify the good performance of our methods on three real-world datasets but also provide some insightful discoveries on the transferred knowledge.


page 1

page 2

page 3

page 4


Time-Series Domain Adaptation via Sparse Associative Structure Alignment: Learning Invariance and Variance

Domain adaptation on time-series data is often encountered in the indust...

Contrastive Learning for Unsupervised Domain Adaptation of Time Series

Unsupervised domain adaptation (UDA) aims at learning a machine learning...

Causal Mechanism Transfer Network for Time Series Domain Adaptation in Mechanical Systems

Data-driven models are becoming essential parts in modern mechanical sys...

Source-Free Domain Adaptation with Temporal Imputation for Time Series Data

Source-free domain adaptation (SFDA) aims to adapt a pretrained model fr...

Population-aware Hierarchical Bayesian Domain Adaptation via Multiple-component Invariant Learning

Observational transport relates to transferring a statistical relation R...

Two ways towards combining Sequential Neural Network and Statistical Methods to Improve the Prediction of Time Series

Statistic modeling and data-driven learning are the two vital fields tha...

Please sign up or login with your details

Forgot password? Click here to reset