Time-periodic steady-state solution of fluid-structure interaction and cardiac flow problems through multigrid-reduction-in-time

05/01/2021 ∙ by Andreas Hessenthaler, et al. ∙ 0

In this paper, a time-periodic MGRIT algorithm is proposed as a means to reduce the time-to-solution of numerical algorithms by exploiting the time periodicity inherent to many applications in science and engineering. The time-periodic MGRIT algorithm is applied to a variety of linear and nonlinear single- and multiphysics problems that are periodic-in-time. It is demonstrated that the proposed parallel-in-time algorithm can obtain the same time-periodic steady-state solution as sequential time-stepping. An intuitive convergence criterion is derived and it is shown that the new MGRIT variant can significantly and consistently reduce the time-to-solution compared to sequential time-stepping, irrespective of the number of dimensions, linear or nonlinear PDE models, single-physics or coupled problems and the employed computing resources. The numerical experiments demonstrate that the time-periodic MGRIT algorithm enables a greater level of parallelism yielding faster turnaround, and thus, facilitating more complex and more realistic problems to be solved.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.