Thurstonian Boltzmann Machines: Learning from Multiple Inequalities

08/01/2014
by   Truyen Tran, et al.
0

We introduce Thurstonian Boltzmann Machines (TBM), a unified architecture that can naturally incorporate a wide range of data inputs at the same time. Our motivation rests in the Thurstonian view that many discrete data types can be considered as being generated from a subset of underlying latent continuous variables, and in the observation that each realisation of a discrete type imposes certain inequalities on those variables. Thus learning and inference in TBM reduce to making sense of a set of inequalities. Our proposed TBM naturally supports the following types: Gaussian, intervals, censored, binary, categorical, muticategorical, ordinal, (in)-complete rank with and without ties. We demonstrate the versatility and capacity of the proposed model on three applications of very different natures; namely handwritten digit recognition, collaborative filtering and complex social survey analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro