ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Neural Network Accelerators

02/11/2018 ∙ by Jeff Zhang, et al. ∙ 0

Hardware accelerators are being increasingly deployed to boost the performance and energy efficiency of deep neural network (DNN) inference. In this paper we propose Thundervolt, a new framework that enables aggressive voltage underscaling of high-performance DNN accelerators without compromising classification accuracy even in the presence of high timing error rates. Using post-synthesis timing simulations of a DNN accelerator modeled on the Google TPU, we show that Thundervolt enables between 34%-57% energy savings on state-of-the-art speech and image recognition benchmarks with less than 1% loss in classification accuracy and no performance loss. Further, we show that Thundervolt is synergistic with and can further increase the energy efficiency of commonly used run-time DNN pruning techniques like Zero-Skip.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.