THU-Splines: Highly Localized Refinement on Smooth Unstructured Splines

03/31/2021
by   Xiaodong Wei, et al.
0

We present a novel method named truncated hierarchical unstructured splines (THU-splines) that supports both local h-refinement and unstructured quadrilateral meshes. In a THU-spline construction, an unstructured quadrilateral mesh is taken as the input control mesh, where the degenerated-patch method [18] is adopted in irregular regions to define C^1-continuous bicubic splines, whereas regular regions only involve C^2 B-splines. Irregular regions are then smoothly joined with regular regions through the truncation mechanism [29], leading to a globally smooth spline construction. Subsequently, local refinement is performed following the truncated hierarchical B-spline construction [10] to achieve a flexible refinement without propagating to unanticipated regions. Challenges lie in refining transition regions where a mixed types of splines play a role. THU-spline basis functions are globally C^1-continuous and are non-negative everywhere except near extraordinary vertices, where slight negativity is inevitable to retain refinability of the spline functions defined using the degenerated-patch method. Such functions also have a finite representation that can be easily integrated with existing finite element or isogeometric codes through Bézier extraction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset