Throughput and Latency in the Distributed Q-Learning Random Access mMTC Networks

In mMTC mode, with thousands of devices trying to access network resources sporadically, the problem of random access (RA) and collisions between devices that select the same resources becomes crucial. A promising approach to solve such an RA problem is to use learning mechanisms, especially the Q-learning algorithm, where the devices learn about the best time-slot periods to transmit through rewards sent by the central node. In this work, we propose a distributed packet-based learning method by varying the reward from the central node that favors devices having a larger number of remaining packets to transmit. Our numerical results indicated that the proposed distributed packet-based Q-learning method attains a much better throughput-latency trade-off than the alternative independent and collaborative techniques in practical scenarios of interest. In contrast, the number of payload bits of the packet-based technique is reduced regarding the collaborative Q-learning RA technique for achieving the same normalized throughput.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset