Third-Order Asymptotics of Variable-Length Compression Allowing Errors

07/10/2020
by   Yuta Sakai, et al.
0

This study investigates the fundamental limits of variable-length compression in which prefix-free constraints are not imposed (i.e., one-to-one codes are studied) and non-vanishing error probabilities are permitted. Due in part to a crucial relation between the variable-length and fixed-length compression problems, our analysis requires a careful and refined analysis of the fundamental limits of fixed-length compression in the setting where the error probabilities are allowed to approach either zero or one polynomially in the blocklength. To obtain the refinements, we employ tools from moderate deviations and strong large deviations. Finally, we provide the third-order asymptotics for the problem of variable-length compression with non-vanishing error probabilities. We show that unlike several other information-theoretic problems in which the third-order asymptotics are known, for the problem of interest here, the third-order term depends on the permissible error probability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset